General Analytic Solutions and Complementary Variational Principles for Large Deformation Nonsmooth Mechanics ∗

نویسنده

  • YANG GAO
چکیده

This paper presents a nonlinear dual transformation method and general complementary energy principle for solving large deformation theory of elastoplasticity governed by nonsmooth constitutive laws. It is shown that by using this method and principle, the nonconvex and nonsmooth total potential energy is dual to a smooth complementary energy functional, and fully nonlinear equilibrium equations in finite deformation problems can be converted into certain tensor equations. The algebraic relation between the first and the second Piola–Kirchhoff stresses are revealed. A closed form solution for general three-dimensional large deformation boundary value problems is obtained. The properties of this general solution are clarified by a triality extremum principle. This triality theory reveals an important phenomenon in nonconvex variational problems. Applications are illustrated by nonlinear, nonsmooth equilibrium problems in Hencky’s plasticity, 3D cylindrical structures and post buckling analysis of elastoplastic bar with jumping and hardening effects. The idea and methods presented in this paper can be used and generalized to solve many nonlinear boundary value problems in finite deformation theory. Sommario. Il lavoro presenta un metodo di trasformazione duale nonlineare ed un principio generale di energia complementare per la soluzione di problemi di teoria elastoplastica in grandi deformazioni governati da leggi costitutive con discontinuità. Si mostra come, usando il metodo ed il principio proposti, l’ energia potenziale totale discontinua e nonconvessa duale di un funzionale energia complementare continuo, e le equazioni di equilibrio nonlineare in problemi di deformazione finita, possano essere convertite in equazioni tensoriali. Vengono mostrate le relazioni algebriche fra il primo ed il secondo tensore delle tensioni di Piola–Kirchhoff. Si ottiene una soluzione in forma chiusa per problemi al contorno generali tridimensionali in grandi deformazioni. Le proprietà di tale soluzione generale vengono chiarite per mezzo di un principio estremale di trialità. La eoria della trialità evidenzia un fenomeno importante in problemi variazionali nonconvessi. Vengono presentate applicazioni a problemi di equilibrio nonlineare con discontinuità in situazioni di plasticità alla Hencky, strutture cilindriche in 3D, e nell’analisi postcritica di una barra elastoplastica con effetti hardening e di jumping. L’idea ed i metodi presentati in questo lavoro possono essere usati e generalizzati per risolvere molti problemi al contorno nonlineari nella teoria delle deformazioni finite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical Solutions to General Anti-Plane Shear Problems In Finite Elasticity∗

This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical dualitytriality theory developed by the author, the nonlinear/nonconex partial differential equations for the large deformation problem is converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a ...

متن کامل

Analytic solutions and triality theory for nonconvex and nonsmooth variational problems with applications(

where I ⊂R is an open interval, f(x) is a given function, is a nonlinear di erential operator, and W ( ) ∈ L(I) is a piecewise Gâteaux di erentiable function of = (u); Ua is a closed convex subspace of a re exive Banach space U. This general nonconvex, nonsmooth variational problem appears in many nonlinear systems. For example, in the nonlinear equilibrium problem of Ericksen’s bar subjected t...

متن کامل

Clebsch Variational Principles in Field Theories and Singular Solutions of Covariant Epdiff Equations

This paper introduces and studies a field theoretic analogue of the Clebsch variational principle of classical mechanics. This principle yields an alternative derivation of the covariant Euler-Poincaré equations that naturally includes covariant Clebsch variables via multisymplectic momentum maps. In the case of diffeomorphism groups, this approach gives a new interpretation of recently derived...

متن کامل

Variational Principles for Set-Valued Mappings with Applications to Multiobjective Optimization

This paper primarily concerns the study of general classes of constrained multiobjective optimization problems (including those described via set-valued and vector-valued cost mappings) from the viewpoint of modern variational analysis and generalized differentiation. To proceed, we first establish two variational principles for set-valued mappings, which—being certainly of independent interest...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999